Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2289007, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38086763

RESUMO

We developed new iminosugar-based glycosidase inhibitors against SARS-CoV-2. Known drugs (miglustat, migalastat, miglitol, and swainsonine) were chosen as lead compounds to develop three classes of glycosidase inhibitors (α-glucosidase, α-galactosidase, and mannosidase). Molecular modelling of the lead compounds, synthesis of the compounds with the highest docking scores, enzyme inhibition tests, and in vitro antiviral assays afforded rationally designed inhibitors. Two highly active α-glucosidase inhibitors were discovered, where one of them is the most potent iminosugar-based anti-SARS-CoV-2 agent to date (EC90 = 1.94 µM in A549-ACE2 cells against Omicron BA.1 strain). However, galactosidase inhibitors did not exhibit antiviral activity, whereas mannosidase inhibitors were both active and cytotoxic. As our iminosugar-based drug candidates act by a host-directed mechanism, they should be more resilient to drug resistance. Moreover, this strategy could be extended to identify potential drug candidates for other viral infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Modelos Moleculares , Manosidases , Antivirais/farmacologia , Simulação de Acoplamento Molecular
2.
Nat Commun ; 14(1): 6030, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758692

RESUMO

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Proteômica , Replicação Viral/genética , SARS-CoV-2 , Antivirais/metabolismo , Interações Hospedeiro-Patógeno/genética
3.
Sci Rep ; 13(1): 12798, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550340

RESUMO

The development of effective drugs to treat coronavirus infections remains a significant challenge for the scientific community. Recent evidence reports on the sigma-1 receptor (S1R) as a key druggable host protein in the SARS-CoV-1 and SARS-CoV-2 interactomes and shows a potent antiviral activity against SARS-CoV-2 for the S1R antagonist PB28. To improve PB28 activity, we designed and tested a series of its analogues and identified a compound that is fourfold more potent against SARS-CoV-2 than PB28 itself. Interestingly, we found no direct correlation between S1R affinity and SARS-CoV-2 antiviral activity. Building on this, we employed comparative induced fit docking and molecular dynamics simulations to gain insights into the possible mechanism that occurs when specific ligand-protein interactions take place and that may be responsible for the observed antiviral activity. Our findings offer a possible explanation for the experimental observations, provide insights into the S1R conformational changes upon ligand binding and lay the foundation for the rational design of new S1R ligands with potent antiviral activity against SARS-CoV-2 and likely other viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirais/química , Ligantes , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
4.
PLoS Pathog ; 19(4): e1010491, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018377

RESUMO

Adaptation to mosquito vectors suited for transmission in urban settings is a major driver in the emergence of arboviruses. To better anticipate future emergence events, it is crucial to assess their potential to adapt to new vector hosts. In this work, we used two different experimental evolution approaches to study the adaptation process of an emerging alphavirus, Mayaro virus (MAYV), to Ae. aegypti, an urban mosquito vector of many other arboviruses. We identified E2-T179N as a key mutation increasing MAYV replication in insect cells and enhancing transmission after escaping the midgut of live Ae. aegypti. In contrast, this mutation decreased viral replication and binding in human fibroblasts, a primary cellular target of MAYV in humans. We also showed that MAYV E2-T179N generates reduced viremia and displays less severe tissue pathology in vivo in a mouse model. We found evidence in mouse fibroblasts that MAYV E2-T179N is less dependent on the Mxra8 receptor for replication than WT MAYV. Similarly, exogenous expression of human apolipoprotein receptor 2 and Mxra8 enhanced WT MAYV replication compared to MAYV E2-T179N. When this mutation was introduced in the closely related chikungunya virus, which has caused major outbreaks globally in the past two decades, we observed increased replication in both human and insect cells, suggesting E2 position 179 is an important determinant of alphavirus host-adaptation, although in a virus-specific manner. Collectively, these results indicate that adaptation at the T179 residue in MAYV E2 may result in increased vector competence-but coming at the cost of optimal replication in humans-and may represent a first step towards a future emergence event.


Assuntos
Aedes , Infecções por Alphavirus , Alphavirus , Arbovírus , Vírus Chikungunya , Animais , Camundongos , Humanos , Aedes/genética , Alphavirus/genética , Vírus Chikungunya/genética , Mosquitos Vetores/genética , Glicoproteínas , Imunoglobulinas , Proteínas de Membrana
5.
Eur J Immunol ; 52(10): 1648-1661, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030374

RESUMO

Anti-CD20 monoclonal antibodies such as Rituximab, Ofatumumab, and Obinutuzumab are widely used to treat lymphomas and autoimmune diseases. They act by depleting B cells, mainly through Fc-dependent effectors functions. Some patients develop resistance to treatment but the underlying mechanisms are poorly understood. Here, we performed a genome-wide CRISPR/Cas9 screen to identify genes regulating the efficacy of anti-CD20 antibodies. We used as a model the killing of RAJI B cells by Rituximab through complement-dependent-cytotoxicity (CDC). As expected, the screen identified MS4A1, encoding CD20, the target of Rituximab. Among other identified genes, the role of Interferon Regulatory Factor 8 (IRF8) was validated in two B-cell lines. IRF8 KO also decreased the efficacy of antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP) induced by anti-CD20 antibodies. We further show that IRF8 is necessary for efficient CD20 transcription. Levels of IRF8 and CD20 RNA or proteins correlated in normal B cells and in hundreds of malignant B cells. Therefore, IRF8 regulates CD20 expression and controls the depleting capacity of anti-CD20 antibodies. Our results bring novel insights into the pathways underlying resistance to CD20-targeting immunotherapies.


Assuntos
Antígenos CD20 , Antineoplásicos , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , RNA , Rituximab/farmacologia , Rituximab/uso terapêutico
6.
Med Vet Entomol ; 36(4): 486-495, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762523

RESUMO

The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock-down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.


Assuntos
Aedes , Arbovírus , Vírus Chikungunya , Inseticidas , Animais , Inseticidas/farmacologia , Mosquitos Vetores , Resistência a Inseticidas/genética
7.
Nat Commun ; 13(1): 2442, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508460

RESUMO

Interferon restricts SARS-CoV-2 replication in cell culture, but only a handful of Interferon Stimulated Genes with antiviral activity against SARS-CoV-2 have been identified. Here, we describe a functional CRISPR/Cas9 screen aiming at identifying SARS-CoV-2 restriction factors. We identify DAXX, a scaffold protein residing in PML nuclear bodies known to limit the replication of DNA viruses and retroviruses, as a potent inhibitor of SARS-CoV-2 and SARS-CoV replication in human cells. Basal expression of DAXX is sufficient to limit the replication of SARS-CoV-2, and DAXX over-expression further restricts infection. DAXX restricts an early, post-entry step of the SARS-CoV-2 life cycle. DAXX-mediated restriction of SARS-CoV-2 is independent of the SUMOylation pathway but dependent on its D/E domain, also necessary for its protein-folding activity. SARS-CoV-2 infection triggers the re-localization of DAXX to cytoplasmic sites and promotes its degradation. Mechanistically, this process is mediated by the viral papain-like protease (PLpro) and the proteasome. Together, these results demonstrate that DAXX restricts SARS-CoV-2, which in turn has evolved a mechanism to counteract its action.


Assuntos
COVID-19 , SARS-CoV-2 , Sistemas CRISPR-Cas , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Humanos , Interferons/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
8.
Iran Biomed J ; 26(4): 269-78, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35468712

RESUMO

Background: Self-amplifying mRNA is the next-generation vaccine platform with the potential advantages in efficacy and speed of development against infectious diseases and cancer. The main aim was to present optimized and rapid methods for Semliki Forest virus (SFV)-PD self-amplifying mRNA (SAM) preparation, its packaging, and titer determination. These protocols are provided for producing and harvesting the high yields of virus replicon particle (VRP)-packaged SAM for vaccine studies. Methods: pSFV-PD-EGFP plasmid was linearized and subjected to in vitro transcription. Different concentrations of SFV-PD SAM were first transfected into human embryonic kidney 293 cells (HEK-293) and baby hamster kidney cell line 21 (BHK-21) cell lines, and EGFP expression at different time points was evaluated by fluorescent microscopy. Replicon particle packaging was achieved by co-transfection of SFV-PD SAM and pSFV-Helper2 RNA into BHK-21 cells. The VRPs were concentrated using ultrafiltration with 100 kDa cut-off. The titers of replicon particles were determined by reverse transcription quantitative real-time PCR (RT-qPCR). Results: In vitro transcribed SAM encoding EGFP was successfully transfected and expressed in HEK-293 and BHK-21 cell lines. Higher levels of EGFP expression was observed in BHK-21 compared to HEK-293 cells showing more stable protein overexpression and VRP packaging. Using ultrafiltration, the high yields of purified SFV-PD-EGFP particles were rapidly obtained with only minor loss of replicon particles. Accurate and rapid titer determination of replication-deficient particles was achieved by RT-qPCR. Conclusion: Using optimized methods for SAM transfection, VRP packaging, and concentration, high yields of SFV-PD VRPs could be produced and purified. The RT-qPCR demonstrated to be an accurate and rapid method for titer determination of replication deficient VRPs.


Assuntos
Vetores Genéticos , Vírus da Floresta de Semliki , Animais , Cricetinae , Células HEK293 , Humanos , RNA Mensageiro , Transfecção , Vacinas Sintéticas , Vacinas de mRNA
9.
Front Cell Infect Microbiol ; 12: 790851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360100

RESUMO

Animal models are essential to understanding COVID-19 pathophysiology and for preclinical assessment of drugs and other therapeutic or prophylactic interventions. We explored the small, cheap, and transparent zebrafish larva as a potential host for SARS-CoV-2. Bath exposure, as well as microinjection in the coelom, pericardium, brain ventricle, or bloodstream, resulted in a rapid decrease of SARS-CoV-2 RNA in wild-type larvae. However, when the virus was inoculated in the swim bladder, viral RNA stabilized after 24 h. By immunohistochemistry, epithelial cells containing SARS-CoV-2 nucleoprotein were observed in the swim bladder wall. Our data suggest an abortive infection of the swim bladder. In some animals, several variants of concern were also tested with no evidence of increased infectivity in our model. Low infectivity of SARS-CoV-2 in zebrafish larvae was not due to the host type I interferon response, as comparable viral loads were detected in type I interferon-deficient animals. A mosaic overexpression of human ACE2 was not sufficient to increase SARS-CoV-2 infectivity in zebrafish embryos or in fish cells in vitro. In conclusion, wild-type zebrafish larvae appear mostly non-permissive to SARS-CoV-2, except in the swim bladder, an aerial organ sharing similarities with the mammalian lung.


Assuntos
COVID-19 , Peixe-Zebra , Animais , Larva , Mamíferos , RNA Viral , SARS-CoV-2 , Bexiga Urinária
10.
Parasitol Int ; 89: 102577, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35301120

RESUMO

The main aims of the present study were to design a fusion protein of Leishmania major stress-inducible protein 1 (LmSTI1) and Phlebotomus papatasi SP15 (PpSP15), and to express it in the form of alphavirus packaged Self-amplifying mRNA (SAM). Two combinations, PpSP15-LmSTI1 and LmSTI1-PpSP15 fusion forms, were analyzed for folding and minimum free energies of the mRNA. Conformational studies on 3D modeled fusion and native forms were performed, and the Root-Mean-Square-distance (RMSD) of the Cα atomic coordinates were calculated. Antigenicity and stability were predicted using bioinformatics tools. The coding sequences of PpSP15-LmSTI1 fusion, PpSP15, and LmSTI1 were cloned into an alphavirus-based vector and used to produce the SAM constructs. All the subcloned constructs were then subjected to packaging in the form of viral replicon particles (VRPs),and were evaluated for their ability to infect BHK-21 cells and express the recombinant fusion proteins. The in-silico analysis indicated that the PpSP15-LmSTI1 combination could be a promising candidate based on lower folding ΔG of mRNA, higher protein antigenicity and lower instability indexes, and less conformational changes compared to the native proteins and the LmSTI1-PpSP15 fusion form. Packaged SAM encoding fusion and native antigens are used for infection of mammalian cells and for recombinant protein expression. This is the first study on in silico designing and successful packaging of an alphavirus-derived SAM in the form of the VRPs to target leishmaniasis.


Assuntos
Alphavirus , Leishmania major , Leishmaniose Cutânea , Phlebotomus , Vacinas , Alphavirus/genética , Animais , Leishmania major/genética , Mamíferos , Phlebotomus/genética , RNA Mensageiro/genética , Proteínas Recombinantes
11.
J Infect Dis ; 226(5): 891-895, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022749

RESUMO

Single-nucleotide polymorphism in APOBEC3C (resulting in a serine to isoleucine in position 188) is present in approximately 10% of African populations and greatly enhances restriction against human immunodeficiency virus-1 and simian immunodeficiency virus by improving dimerization and DNA processivity of the enzyme. In this study, we demonstrated in culture and in infected patients that hepatitis B virus (HBV) could be edited by APOBEC3CS188I. Using next-generation sequencing, we demonstrated that APOBEC3CS188I led to enhanced editing activity in 5'TpCpA→5'TpTpA context. This constitutes a new hallmark of this enzyme, which could be used to determine its impact on HBV or nuclear DNA.


Assuntos
Citidina Desaminase , Genoma Viral , Vírus da Hepatite B , Citidina Desaminase/genética , Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Polimorfismo de Nucleotídeo Único
12.
Nat Cell Biol ; 24(1): 24-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027731

RESUMO

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted a targeted CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. Here we show that the protein BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells, including those of human nasal epithelia. Moreover, pharmacological BRD2 inhibition with the drug ABBV-744 inhibited SARS-CoV-2 replication in Syrian hamsters. We also found that BRD2 controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates the antiviral response. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a therapeutic target for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Células Epiteliais/virologia , SARS-CoV-2/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
13.
EMBO Rep ; 23(2): e54341, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34914162

RESUMO

SARS-CoV-2 infection results in impaired interferon response in patients with severe COVID-19. However, how SARS-CoV-2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS-CoV-2-infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus-derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3'UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 can potentially employ a virus-derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon-mediated immune response.


Assuntos
COVID-19 , MicroRNAs , RNA Viral/genética , SARS-CoV-2/genética , Regiões 3' não Traduzidas , COVID-19/imunologia , Humanos , Imunidade , MicroRNAs/genética
14.
J Virol ; 96(2): e0106021, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705560

RESUMO

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


Assuntos
Capsídeo/química , Mutação/efeitos dos fármacos , Rhinovirus/fisiologia , Desenvelopamento do Vírus/fisiologia , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Endossomos/química , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Molécula 1 de Adesão Intercelular/metabolismo , Conformação Proteica , Rhinovirus/química , Rhinovirus/efeitos dos fármacos , Rhinovirus/genética , Vírion/química , Vírion/genética , Vírion/metabolismo , Internalização do Vírus/efeitos dos fármacos , Desenvelopamento do Vírus/efeitos dos fármacos , Desenvelopamento do Vírus/genética
15.
mBio ; 12(6): e0255721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809467

RESUMO

Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the UL12.5 gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the UL12.5 gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. IMPORTANCE Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in UL12, we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.


Assuntos
Proteína DEAD-box 58/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Interferon beta/metabolismo , Mitocôndrias/virologia , RNA Polimerase III/metabolismo , Receptores Imunológicos/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Proteína DEAD-box 58/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Interferon beta/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Polimerase III/genética , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Mol Cell ; 81(21): 4467-4480.e7, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34687604

RESUMO

Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the "backtracked" state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity.


Assuntos
Pirazinas/química , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Recombinação Genética , Ribonucleotídeos/química , Animais , Antivirais , Catálise , Células Cultivadas , Técnicas Genéticas , Genoma , Genoma Viral , Recombinação Homóloga , Humanos , Cinética , Camundongos , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Mutagênese , Nucleotídeos/genética , Conformação Proteica , RNA/química , RNA Polimerase Dependente de RNA/metabolismo , RNA-Seq , Transgenes , Virulência
17.
J Virol ; 95(22): e0097721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468175

RESUMO

Here, we examine in silico the infection dynamics and interactions of two Zika virus (ZIKV) genomes: one is the full-length ZIKV genome (wild type [WT]), and the other is one of the naturally occurring defective viral genomes (DVGs), which can replicate in the presence of the WT genome, appears under high-MOI (multiplicity of infection) passaging conditions, and carries a deletion encompassing part of the structural and NS1 protein-coding region. Ordinary differential equations (ODEs) were used to simulate the infection of cells by virus particles and the intracellular replication of the WT and DVG genomes that produce these particles. For each virus passage in Vero and C6/36 cell cultures, the rates of the simulated processes were fitted to two types of observations: virus titer data and the assembled haplotypes of the replicate passage samples. We studied the consistency of the model with the experimental data across all passages of infection in each cell type separately as well as the sensitivity of the model's parameters. We also determined which simulated processes of virus evolution are the most important for the adaptation of the WT and DVG interplay in these two disparate cell culture environments. Our results demonstrate that in the majority of passages, the rates of DVG production are higher inC6/36 cells than in Vero cells, which might result in tolerance and therefore drive the persistence of the mosquito vector in the context of ZIKV infection. Additionally, the model simulations showed a slower accumulation of infected cells under higher activation of the DVG-associated processes, which indicates a potential role of DVGs in virus attenuation. IMPORTANCE One of the ideas for lessening Zika pathogenicity is the addition of its natural or engineered defective virus genomes (DVGs) (have no pathogenicity) to the infection pool: a DVG is redirecting the wild-type (WT)-associated virus development resources toward its own maturation. The mathematical model presented here, attuned to the data from interplays between WT Zika viruses and their natural DVGs in mammalian and mosquito cells, provides evidence that the loss of uninfected cells is attenuated by the DVG development processes. This model enabled us to estimate the rates of virus development processes in the WT/DVG interplay, determine the key processes, and show that the key processes are faster in mosquito cells than in mammalian ones. In general, the presented model and its detailed study suggest in what important virus development processes the therapeutically efficient DVG might compete with the WT; this may help in assembling engineered DVGs for ZIKV and other flaviviruses.


Assuntos
Vírus Defeituosos , Interações entre Hospedeiro e Microrganismos , Infecção por Zika virus/virologia , Zika virus , Aedes , Animais , Chlorocebus aethiops , Vírus Defeituosos/crescimento & desenvolvimento , Vírus Defeituosos/patogenicidade , Células Vero , Replicação Viral , Zika virus/crescimento & desenvolvimento , Zika virus/patogenicidade
18.
Virologie (Montrouge) ; 25(4): 224-235, 2021 08 01.
Artigo em Francês | MEDLINE | ID: mdl-34468319

RESUMO

Genetic recombination is a major force driving the evolution of some species of positive sense RNA viruses. Recombination events occur when at least two viruses simultaneously infect the same cell, thereby giving rise to new genomes comprised of genetic sequences originating from the parental genomes. The main mechanism by which recombination occurs involves the viral polymerase that generates a chimera as it switches templates during viral replication. Various experimental systems have alluded to the existence of recombination events that are independent of viral polymerase activity. The origins and frequency of such events remain to be elucidated to this day. Furthermore, it is not known whether non-replicative recombination yields products that are different from recombinants generated by the viral polymerase. If this is the case, then non-replicative recombination may play a unique role in the evolution of positive sense RNA viruses. Finally, the sparse data available suggest that non-replicative recombination does not necessarily involve only virus-specific sequences. It is thus possible that the non-replicative recombination observed in virus-focused studies may in fact reveal a more generalized mechanism that is non-specific to virus RNAs.


Assuntos
Vírus de RNA de Cadeia Positiva , Recombinação Genética , Sequência de Bases , RNA Viral/genética , Recombinação Genética/genética , Replicação Viral/genética
19.
Virologie (Montrouge) ; 25(4): 62-73, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468320

RESUMO

Genetic recombination is a major force driving the evolution of some species of positive sense RNA viruses. Recombination events occur when at least two viruses simultaneously infect the same cell, thereby giving rise to new genomes comprised of genetic sequences originating from the parental genomes. The main mechanism by which recombination occurs involves the viral polymerase that generates a chimera as it switches templates during viral replication. Various experimental systems have alluded to the existence of recombination events that are independent of viral polymerase activity. The origins and the frequency of such events remain to be elucidated to this day. Furthermore, it is not known whether non-replicative recombination yields products that are different from recombinants generated by the viral polymerase. If this is the case, then non-replicative recombination may play a unique role in the evolution of positive sense RNA viruses. Finally, the sparse data available suggest that non-replicative recombination does not necessarily involve only virus-specific sequences. It is thus possible that the non-replicative recombination observed in virus-focused studies may in fact reveal a more generalized mechanism that is non-specific to virus RNAs.


Assuntos
Vírus de RNA de Cadeia Positiva , Recombinação Genética , Sequência de Bases , RNA Viral/genética , Recombinação Genética/genética , Replicação Viral/genética
20.
J Theor Biol ; 531: 110895, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34499915

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV -2), a causative agent of COVID-19 disease, poses a significant threat to public health. Since its outbreak in December 2019, Wuhan, China, extensive collection of diverse data from cell culture and animal infections as well as population level data from an ongoing pandemic, has been vital in assessing strategies to battle its spread. Mathematical modelling plays a key role in quantifying determinants that drive virus infection dynamics, especially those relevant for epidemiological investigations and predictions as well as for proposing efficient mitigation strategies. We utilized a simple mathematical model to describe and explain experimental results on viral replication cycle kinetics during SARS-CoV-2 infection of animal and human derived cell lines, green monkey kidney cells, Vero-E6, and human lung epithelium cells, A549-ACE2, respectively. We conducted cell infections using two distinct initial viral concentrations and quantified viral loads over time. We then fitted the model to our experimental data and quantified the viral parameters. We showed that such cellular tropism generates significant differences in the infection rates and incubation times of SARS-CoV-2, that is, the times to the first release of newly synthesised viral progeny by SARS-CoV-2-infected cells. Specifically, the rate at which A549-ACE2 cells were infected by SARS-CoV-2 was 15 times lower than that in the case of Vero-E6 cell infection and the duration of latent phase of A549-ACE2 cells was 1.6 times longer than that of Vero-E6 cells. On the other hand, we found no statistically significant differences in other viral parameters, such as viral production rate or infected cell death rate. Since in vitro infection assays represent the first stage in the development of antiviral treatments against SARS-CoV-2, discrepancies in the viral parameter values across different cell hosts have to be identified and quantified to better target vaccine and antiviral research.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Humanos , Modelos Teóricos , Pandemias , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...